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Convolution revisited

That probability theory can serve as an invaluable tool

in solving engineering problems is amply demonstrated by the use
of convolution techniques providing solutions previously

attainable by transform methods

Timothy J. Healy University of Santa Clara

Few mathematical operations are more impor-
tant to the engineer than convolution and trans-
form analysis. In this article, the operation of
convolution is explored—starting with discrete
rather than continuous convelution because of
the relative ease of comprchension involved. With
this foundation, the study is extended to contin-
uous convolution. A proof of the convolution
theorem will show that convolution and transform
analysis are closely related. Of much more in-
terest, however, is an intuitive explanation of why
convolution and transform analysis techniques
lead to exactly the same solution of a given prob-
lem. Perhaps the two most important applica-
tions of convolution deal with the analysis of
linear systems and the sums of independent ran-
dom variables—the latter problem being used to
introduce discrete convolution.

Adding random variables

Transformers of a certain typc arc delivered by
two companies, which will be calicd A4 and B, in lots
of three and four, respectively. In a lot [rom company
A, there will be zcro, one, two, or three defective
transformers. The probability that cach of these num-
bers of defects, represented by a (¢ = 0, 1, 2, 3),
will occur is given as

a__ Pla)
0 0.4
1 0.3
2 0.2
3 o1

Similarly, the probability of b (b = 0, 1, 2, 3, 4) oc-
currences is

in a shipment from company B. The problem is 0
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find the probabilitics of the total number of defects
in two shipments, onc from cach company. This sum
or total number of defects will be indicated as ¢ (¢ =
0,1,2,3 4,5 6, 7).

The probability that ¢ = 0 is the probability that
a = 0 and b = 0O; that is, that there are no defects
in cither shipment. This is written as

Plc=0) = Pla =0 and b = 0)
If the events « = 0 and b = 0 arc independent of
cach other, which we assume here and which is neces-
sary if the solution is to be a convolution, then this
probability reduces to the product
Plc = 0) = Pla = 0) X P(b = 0)
=04 X 0.3
= 0.12

The probability that we have a total of one defect
is the probability that the shipment from A4 has one
defect and the shipment from B none, or vice versa.
That is,

Pc=1) = Pl(a=1 and b = 0)

or (a= 0 and b = 1)]

Using an axiom of probability theory, the probability
of the “or” statement within the brackets is changed
to thc sum of two probabilitics.

Pc=1 = Pla= 1 and b = 0)

4+ Pla=0and b = 1)
= Pla = HP(b = 0)
+ Pla = 0O)P(b = 1)

= 03X 034 04X0.2
= 0.17
Similarly,
Plc=2) = Pl{a =2 and b = 0)
or (a=1 and b = 1)
or (a = 0 and b = 2)]
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b~ Pta - opih Q)
02X 03 4 03X 0.2+ 04X0.2
2020

Continuing in this wav, onc can obtain the proba-
bilities Tor all cight possible values of . The result
IS given as

IS i)
0 012
1 017
2 (.20
3 021
i 016
5 00y
6 (04
7 0.01

Discrete convolution

Although it is possible to solve this problem in the
manncer just described, it is highly desirable to find
a shorteut to determine the probabilities of the values
of ¢. Notice how the entries tor ¢ and b are used 1o
find those for ¢. The first entry for ¢ is the product
of the first entries for « and b, The second entry for
cis eniry 1 of b times entry 2 of « plus entry 2
ol a times entry | of A The third entry of ¢ is the
sum of cross terms 1 oand 3, 2 and 2, 3 and | of
a and b.

We can systematize the process of finding the entries
for ¢ in the following way. Write the probubilities
for a and b as sequences A and f:

(o403 0.2 0.1]

14 (0.3 02 .0.2.0.2 0.1

" both the techniques and results of di
couraged to look for interesting forms or combinations and perhaps deduce

This_ box contains.a number of exercise :
screte convolution. The reader is en- !

Call the reversed sequence B,

i 002020203

A and the inverted sequence B,
<o that the first right-hand term of #... is under the
first left-hand term of A:

Position sequence

04 0.3 0.2 0.1
01 02020203
The probuability of 0 defects is the product of the
overlapping numbers 0.4 and 0.3, Now  shift the
inverted sequence one position o the right:

0.4 0.3 0.2 0.1
0.1 02020203
Lhe probubility of one defect is the sum of the over-
lapping products 0.2 = 0.4 and .3 . 0.3 The
remaining terms in ¢ are obtained by shitting the
inverted sequence one step at a time to the right,
and for each step summing the overlap products.

Fhe process of inverting a sequence, sliding it one
step at a time to the right, and summing the overlap
products s called discrete convolution, It is some-
times called serial multiplication. (An excellent dis-
cussion of serial multiplication or diserete convolu-
tion is given by Bracewell.!')

The asterisk (*) 15 generally used to indicate dis-
crete as well as continuous  convolution. Thus, we
write

C o 1R (13
040302 0.0] % [0.30202020.1)

10120017 020 0.21 0.16 0.09 .04 0.01}]

Betore proceeding with the theoretical development.
the reader who is not Tamiliar with discrete convolu-
tion should spend  some  time  practicing the  tech-
nigue. ‘The objective of this practice is 1o get a teeling

some of the properties of convolution that have not been discussed here.
) [3151*[447]=[121645 27 35]

(4] [1441]1%[262] =[2143434142)]

3 [1331]*%[121]1=[15101051]

(4) [951]*%[531]=[45522981]

5) [4178]*[---001000---]:[---004178000---]

(6) [1111]1*%[1111]=[1234321]

(7) [81632]*%[415]=[321265234117 10]
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of further developments.
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There are a number of ways one may carry out
the mechanics of the operation. It is well to start with
a procedure that is a little tedious but very instructive.
Consider the convolution of two sequences, A4 and
B, defined as

A=1[3142]

Write the sequence A on one piece of paper. On the
edge of a second piece of paper, write the inverted
sequence B,,, with the same spacing as 4.

B=1[2135]

6
4 2

3 1

5 1 2 %
Slide the B, sequence paper to the right until the
2 is under the 3. Obtain the product 6 and write it

above the 3. Shift the B, sequence paper one step
to the right:

6 5
3 1 4 2

512—%—>

Add the paired products 2 X 1 and 1 X 3 to obtain
5: write 5 above the 1. Repeat this operation until
the paired products are finished; one should obtain

[3142)*%[215]=1[652413 22 10]

A number of examples are given in the tinted box
on page 88. The reader should work one or two
with the method just outlined; once he has a fecling
for what is happening he will want to find a simpler
method. The following approach seems to be as
simple as possible. Write out the sequences in a con-
ventional multiplication format. Do not invert either
sequence. Use the conventional multiplication pro-
cedure with the exception of carrying tens—do not
carry tens.

3 1 4 2
2 1 5
15 5 20 10
3 1 4 2
6 2 8 4

6 5 24 13 22 10

If one uses this technique to obtain some of the re-
sults in numerical examples that are given, it will be
easier to understand, and to check, the following
properties or facts. No rigorous proofs will be given
here.

Consider the convolution of two sequences 4 and B
to obtain a third sequence C.

A=[a0al-..ai...]
B=[bybys+eb;-]
C=[Co Cp °* c‘,.--]

Healy—Convolution revisited

¢ = Z a;ib;_; 2

i=0
2. If the sequence A4 has n, terms and the sequence
B has n, terms, the number of terms in sequence C is

ne = ny -+ ny — 1 (3)
3. Convolution is commutative:

A*B=DB* A4 )

This means that cither sequence can be inverted and
shifted.

4. The product of the sum of the clements in

sequence A and the sum of the elements in sequence

B is equal to the sum of the elements in sequence C.

That is,
(nf:l ai) (WBZ—:I bi) = n“f—l Ci (5)

i=0 j=0 k=0
This property should always be used as a check on
simple discrete convolution problems. It is a parti-
cularly significant property in the sums of random
variables problem since the three sequences must each
add up to one. This is true because the probabilitics
in an experiment always total one.

We will see the continuous convolution analogs to
these four properties in the next section.

Before moving on to a discussion of continuous
convolution, the problem of inverting the discrete
convolution process will be described. Consider the
following numerical example:

[3142]*[b, by bs] = [6 5 24 13 22 10]

In the inversion problem, the task is to find the
sequence B. An algorithm for generating the elements
of B is easily established. Consider the following:

6 52413 2210
31 4 2
bzblbg

Since 3 X b, = 6, b, is obviously 2. Now shift B
to the right one step. We find b, from the expression

3X b+ 1Xb=35
But b, is known, so we can write

5= 1Xby, _
b, = — 3 = 1
The general expression for b, is
i—1
C; — Z b,‘ai_,-
by = — (6)

dy

Although this expression is quite simple and
straightforward in principle, there are serious prob-
lems concerned with applying it. If the measured
values of C are noisy, that is, if their measured values
do not equal their true values, then the values of b,
obtained from Eq. (6) will be increasingly inaccurate
as { increases. This is true because the errors accumu-
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interesting example of this accumulation of error is
given by Landgrebe.2

At this point, our discussion of discrete convolution
will end in order to review the more familiar concepts
of continuous convolution. We will return to discrete
convolution after borrowing an idea or two from
continuous convolution.

Continuous convolution

This section will be essentially a review for many
readers. However, it would be well for anyone who
does not have a clear understanding of the concept of
continuous convolution to follow the ideas closely.
He should particularly try to relate each concept in
continuous convolution to its discrete-convolution
analog.

The convolution of two continuous functions f(x)
and g(x) is written as .

1) = [ 109ste —» )

(The reader may be used to seeing limits of 0 to x on
the integral. We shall sec later that this is true only for
functions that are zero for x less than zero.) Equation
(7) is analogous to Eq. (2). Note that the dummy
variable of integration A in (7) plays a role similar to
the dummy variable of summation j in (2). If f(x)
and g(x) are probability density functions of two con-
tinuous random variables, then h(x) is the probability
density function of their sum.

If the variable substitution x — A = B in Eq. (7),
we obtain

1) = [ it~ 0)sts) as ®

which tells us that

1(x) * g(x) = g(x) * §(x) €)
This result is of course analogous to Eq. (4).
Property 4 of the previous section also has an
analogy in continuous convolution—the product of
the area under the f(x) and g(x) curves equals the
area under the h(x) curve. This result is obtained by
integrating both sides of Eq. (7) over all x:

F h(x) dx = f_: f:, N glx — X) d\ dx

]

= /:_m ) j:: glx — N) dx d\

= [ 1 ax [ swae o

The last step is possible because the integral over all
x of g(x — A) is equal to the integral of a(x).

We turn now to a graphical interpretation of the
process of convolution. Consider the functions f(x)
and g(x) in Fig. 1.

The minus sign in the term g(x — A) in Eq. (7)
represents a reversal of the order of the values of
g(A); that is, g(—\) is the mirror image of g(\) with
respect to the g axis. This represents a folding or con-
volving of g(x). The x in g(x — A) represents shifting
of the folded function. This process is illustrated in
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FIGURE 1

described By f(x) and g(x).

Graphical représentation of the functions

FIGURE 2.| Description of ;the process of convolution
for continuous functions.
100)
B ~1) f
F I
T : i
X o 2

Fig. 2. Foy this case, wheré g(x) has zero value for
negative x, [x is easily identified as the position of the
forward edge of the functioﬁ g(x — X) as it is shifted

to the right

The graphical interpretation of continuous convo-
lution can|lnow be summarized. The reader should

compare t

as previously described. Rev

one functiop

and, starting

to the right| one step at a t

with conti
finite num
the shift r
x.) For ea

position x, fin

duct of the|functions f(\)
This last step is of course
sum of the|paired terms in

An inte
tegral is th

This integr

[ v

s with the discrete convolution operation

erse the order of (or fold)
from the far left, shift it
me. (The only difference

lous convolution is that there are an in-
er of infinitesimal steps. Each position of
resents a value

of the continous variable
d the integral of the pro-
and g(x — M) for all A,
analogous to finding the
discrete convolution.

al closely related to the convolution in-
correlation integral:

+ N ax

is used in desc#ibing signals where f(-)

and g(-) are the same function, and describing the

interrelatio

of signals when ;they are different. It also

gives the probability density function of the difference
of two continuous independént random variables.
One of the most challenging problems relating to
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#(0)

X 2

FIGURE 3. Determination of the limits of integration
for the convolution integral.

FIGURE 4. Exponential impulse response to a square
wave of a circuit.

h(x)

]
]
|
|
|
[
1
2
X—>

application of the convolution integral is that of setting
the limits on the integral. The —oo to +co limits of
Eqgs. (7) and (8) apply only if the functions f(x)
and g(x) are nonzero for all x. If we wish to integrate
a function such as

glx) =" 0<x< @

0 — < x>0

over all x, we do so by restricting the limits from
0 to o0; hence, a similar technique is used in the con-
volution problem.

Consider (Fig. 3) the convolution of the functions
shown in Fig. 1, for x between 0 and 2. The arca
under the product of f(A) and g(x — A) is shown
in color. This is the area whose value is found by
Eq. (7). It is apparent in this case that the integration
must be carried out from 0 to x, rather than from
-—0o0 to 0.

We would like to have a relatively simple means
of finding the limits in the general case. For the
example given, the lower limit of the function g(x —
A) is —co and the lower limit on f(A) is 0. When
we integrated, we chose the largest of the two as our
lower limit. The upper limit on g(x — \) is x; the
upper limit of f(A) is 2. We, in turn, chose the smallest
of these for our upper limit of integration. Therefore,
the general rule is: Given two functions with lower
limits m, and m, and upper limits M, and M,, use
max(m,, m:) to min(M,, M.) as the range of integra-
tion.

Healy—Convolution revisited

specifies the range of overlap of the two functions. The
next task is to find the limits m and M for the two
functions. The limits for the fixed function f(A) do
not change. They are simply the limits on the original
function f(x); that is, ‘

m, <A< M, (11)

The limits of the sliding function g(x — A) change
as x changes. If the original argument of g(-) is
called y, and we are given the limits on y as m, and
M, then

m, <y <M,

But y = x — A under the convolution transformation,
0

m,<x— A< M,
x— M, <AL x—m, (12)

Since the limits on the fixed function are given by
(11), and the limits on the sliding function by (12),
the integration or overlap range is

M) <A < min(M,, x — m,) (13)

It is apparent that the range of integration depends
on x, the variable of the resultant of the convolution
opcration. Using (13) to establish the limits for the
convolutions of the functions shown in Fig. 1, one
has

max (m,, x —

min(2,2-0)
h(x) = f 1 X e ™™g (14)
max(0,z—w)

Note that the upper limit in (14) is different for
0 < x £2and x > 2. To see why this is reasonable,
refer to Fig. 3 and visualize the change in the problem
when the sliding function slides past x = 2.

Thus, the integral of Eq. (14) has different limits for
different ranges of x:

fe_”e)‘d)\ 0<x<2
a(x) = 3°°
2
f e d x> 2
° . (15)
_ {1 —e" 0<x<2
e — 1) x> 2

The result, plotted in Fig. 4, is the response to a
square wave of a circuit characterized by an expon-
ential impulse response.

As a second example, consider the general problem
of causal time signals applied to linear time-invariant
networks, in which a signal has zero value for ¢+ < 0.
In general, the range of both is zero to infinity. Substi-
tution into Eq. (13) yields

0< A<t (16)

The variable ¢ is the time at which the network
output is observed and. it is, in general, a function of
the input applied over the entire time period from
zero to r. The output at the instant ¢ is the effect; the
input signal applied after + = 0 is the cause. This
approach to establishing the limits of integration is,
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FIGURE 5. Graphical representation of the discrete
convolution A * B.

in the author’s opinion, the most satisfactory in the
long run. It implies and demands an understanding
of the problem.

An alternative method, using step functions and a
table of special cases, has been proposed by Ross.?
In order to establish the concept of convolution more
clearly, it is instructive at this point to solve a discrete
convolution problem that is the analog of the con-
tinuous problem that led to Eq. (15). As a parallel to
the function f(A), consider a sequence of four iden-
tical elements:

A=[1111]

The discrete analogy to a decaying exponential is a
scquence in which cach element is a constant fraction
of the preceding element. That is,

b, = kb;_, 0<k<1t

If we let b, = 1 and & = 0.8, we obtain

B = [1.00 0.80 0.64 0.51 0.41 0.33 0.26

0.21 0.170.13 - -+ |

(Note that in this analogy no attempt has been made
to make the continuous and discrete problems num-
erically analogous. Only the shapes are analogous.)
Hence,

A* B =[1.001.802.442.952.361.89
1.511.210.980.77 --- ]

A bar graph of A * B is shown in Fig. 5 (compare
Fig. 5 with Fig. 4).

More on discrete convolution

In discrete convolution, a problem is encountered
in establishing the limits of summation, which is
similar to the problem of establishing the limits of
integration in continuous convolution. The independ-
ent variable or index of f(k) is of course k and is
assumed to have a range:

r < k< Ry
The index of g(/) has a range:

r, < I1XR,
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Transformation

Multiplication

}_____.___

Inverse [
transformation

Block diagram, of the alternate paths of

and transformation.

er similar to that of the previous section,

we obtain |for the limits of isummation:

max (ry, 7

The two
for compar

h(x)

h(n)

]
—R) £k < min Ry, n — 1) (1

forms of convolution can now be written
ison:

min( Mg, x—my)
- | s =N ax (18)

max{me,x—My) |

min(RBr,n—7r1)

= > );f(k)g(n—k) (19)

k=max{(rg.n—R}

If our disgrete functions are “causal” (k = 0, 1, 2,
.and?1=H0,1,2,...), then

Z, etc.).
alternate

==y

applicable
differential
form—-or
characteri

There
techniques,|
required t
to obtain,
is unavail

solution
volution p

W) = 3 10stn = 8) (20)

reed now to the subject of transform analysis
lation to convolution.

analysi;

es of problems ithat can be solved using

nsform techniques (e.g., Laplace, Fourier,
igure 6 shows a simple block diagram of

plution paths for a given problem. This

splies to the cohvolution problem, and is
to the transform solution of problems in
equations. In probability theory, the trans-
a very close relative of it—is called the
ic function.

re two basic reasons for using transform
The first is to' simplify the mathematics
reach the desired solution. The second is
n insight or understanding of a problem that
ble without transform techniques. Both of
ns apply in this study.

tart by proving' that we obtain the same

v following either the transform or con-
th in Fig. 6. This involves the proof of thc
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the Fourier transform; a similar proof holds for other
transforms. The Fourier transform of the function

f(x) is

F(s) = f_ : f(x)e 2™ dx (21)

Using this definition, we take the transform of both
sides of Eq. (7).

f‘” [f_ f/(?\)g(x — ) dy\] ~izne
f j{ey) [f glx — A = dx] n

Lettingx — A =y,

f_‘: J(\)e 2 [./: g(pe " dy] a\

[ e 61 an

= F(s)-G(s) (22)

This result establishes that convolution in the plane
of the original variable is equivalent to multiplication
in the plane of the transform variable.

If the variable has discrete values, the Fourier
transform is

H(s)

H(s)

F(s) = Z f(k)e™ 7™ (23)

We now repeat the proof of the convolution theorem
for discrete variables.

; [; fNgln — N)e =™
;‘, fo\)[; gln — Ne ™

Lettingn — A = m

; f(}\)e—iz’ Tha [ ; g( nl)e—iZ‘lrmn]
; e =™ [G()]

F(s) - G(s) (24)

These two parallel proofs are quite important, since
they establish the validity of the use of transforms to
solve convolution problems. They are not, however,
particularly satisfying since they tend not to answer
the question of why convolution and transform tech-
niques lead to the same solution. We shall try to
provide the reader with an answer to that question in
the following development.

Discrete functions will be employed since the point
to be made is easily seen in that case. Assume that
f(k) and g(k) are discrete functions that can be
written in the form of sequences, as

f(k) [fo fl f2"'] k=20,1,2,-

glk) = [0 81 8 ] k=0,1,2,:.-

From Eq. (23), the transforms of f(k) and g(k)
are :

H(s)

H(s)

I

Healy—Convolution revisited
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To find f(k) * g(k), we can use the convolution
theorem [Eq. (24)] just established. Multiply F(s)
and G(s), and collect terms with the same exponent:

H(s) = fogoe "™ + (fogr -+ frgo)e *7"°

+ (fogz + he + fzgo)e—wﬂ‘_’ + .- (25)

The convolution of f(k) and g(k) is obtained by
taking the inverse transform of H(s); that is, by
finding the function 2(k) that when transformed yields
H (s). Inspection of Eqs. (23) and (25) suggests that
this function is

h(k) = [(fogo) (Jogr - f180) (fogz + figs + fogo) =<+ ]

We obtain this result by noting the power of the
exponent with which each term is associated. What
is happening here should now be apparent. The trans-
form operation is simply performing a bookkeeping
function. The transform process associates the correct
coefficients with the correct power terms. Multipli-
cation of the transforms leads to the same association
of coefficients as does convolution. Thus, convolution
and the transform process are seen as two essentially
parallel methods of keeping track of sets of coeffi-
cients, _

. This argument is essentially applicable to the con-
tinuous case, though it is by no means as easily
demonstrated.
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Conscience of the City. In an essay
titled “Like It Is in the Alley,” a Har-
vard research psychiatrist, who for
many years has been working with
urban and rural poor people, tran-
scribes for us what a young boy named
Peter has to say about his situation.
Peter lives, Robert Coles writes, in the
heart of what we in contemporary
America have chosen (ironically, so
far as history goes) to call an “urban
ghetto.”

“In the alley it's mostly dark, even
if the sun is out. But if you look
around, you can find things. 1 know
how to get into every building, except
that it's like night once you're inside
them, because they don’t have lights.
So, I stay here. You're better off. It's
no good on the street. You can get
hurt ail the time, one way or the other.
And in buildings, like I told you, it’s
bad in them, too. But here it's 0.k. You
can find your own corner, and if some-
one tries to move in you fight him off.
We meet here all the time, and figure
out what we'll do next. It might be a
game, or over for some pool, or a coke
or something. You need to have a
place to start out from, and that's like
it is in the alley; you can always know
your buddy will be there, provided it's

the right time. So you go there, and

you're on your way, man.”

Peter’s plight—his vivid “you’re on
your way, man” tells us unmistakably
what he nceds is a way out—is shared
by millions of others, both black and
white. The modern city, the traditional
place for a man to shake his fetters,
has been and continues to be, for many
millions, nothing more than a cage. In
a 700, the big cats pace back and forth,
back and forth, along the bars, or they
lie somnolent. For many, the city is
only a zoo for our kind of animal.

What is to be done? For the fact is
that the problem of the poor man in
the city ghetto is but part of a much
larger constellation of problems that
have multiplied increasingly in recent
years. Whether or not the city is a
viable structure in our time has come
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seriously into question. A measure ¢
just how seriously—beyond the ag
counts we all share through our news
papers——and a measure of the diversit}

what may well be unsolvable problen
comes to us in a volume of papers,
which Coles’ “Like It Is in the Alley
is one.

The volume is a special issue
Dedalus, the journal of the American
Academy of Arts and Sciences, and |is
an outgrowth of an AAAS study of the
future of urbanism. At a time whe
private industries—and especially those
organizations that are built around
modern engineering—are being bg-
seeched to contribute to the solutio
of urban problems, there is no ques-
tion that engineers must take a mug
wider compass on such problems thg
their own specialized literature (inclu
ing the best of their vaunted syste
engineering) has thus far providex.

recommended for your attentio
whether you are working directly

they unsettle, and they startle, and, g
in Coles’ case—which weighs like t
center of gravity through the direct ij
dividual human plight—they brea
your heart.

They reorient almost immediately
Melvin M. Webber’s paper, “The Pos
City Age,” which opens the first pat
of the volume called “Traditional Ci
in Transition.” Webber’s thesis is tha
current discussions about the “c
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crisis
the cities” have been clouded by t
misconception that the geographicall
bounded city is still the relevant u
for discussion. He sees this confy
sion stemming “from the anachronisti
thoughtways we have carried over fro
the passing era. We still have no a
quate descriptive terms for the eme
ing social order,” he continues, “a
so we use, perforce, old labels that ¢
no longer fitting. Because we ha
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named them so, we suppose that the
problems manifested inside [our italics]
cities are, therefore and somehow, ‘city
problems.’ Because societies in the past
had been spatially and locally struc-
tured, and because urban societies used
to be exclusively city-based, we seem
still to assume that territoriality is a
necessary attribute of social systems.”

But this conceptual error, Webber
points out, is a serious one, “leading
us to seek local solutions to problems
whose causes are not of local origin
and hence not susceptible to municipal
treatment. We have been tempted to
apply city-building instruments to cor-
rect social disorders, and we have then
been surprised to find that they do not
work.” ‘

The theme of our lack of under-
standing of the real nature of urban
problems persists, in one form or an-
other, through all the papers. Edmund
N. Bacon in “Urban Process,” in “Part
II: Processies and Goals for Change,”
opens baldly with the statement: “The
failure of pur cities is an intellectual
one. It is brought about by the failure
of the intellectuals to generate a viable
concept of a modern city and a mod-
ern region.” To attack the ignorance,
Franklin A. Lindsay in “Managerial
Innovation and the Cities” calls for,
among other goals, greatly increased
research on urban problems: technical,
managerial, social, and economic.
What is lacking now, he argues, “is a
sense of d;irection and urgency. The
most critical ‘missing factors’ are an
understandfng and acceptance of what
is required to make headway on the
complex interrelated social and cco-
nomic problems, and the will to mobi-
lize the necessary human and physical
resources with the urgency that the
problems demand.” Lindsay holds
forth a minimum goal to be reached
ten years from now as a “level of R&D
funding equal to one percent of the
operating budgets of the nation’s cities.
The inadequacy of current spending
on research is pointed out by a recent
report of the Arden House Conference
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